All authors read and approved the final manuscript “
“Backgr

All authors read and approved the final manuscript.”
“Background Mycoplasmas are prokaryotes in the class Mollicutes and are characterised by the absence of a cell wall [1]. Mycoplasmas cause disease in a number of animal species and are able to survive and persist in the face of host defences, even though they possess a relatively small genome and are bounded by a single protective plasma membrane. The recent chemical

synthesis and cloning of whole mycoplasma genomes has also S3I-201 drawn attention to the possibility of creating synthetic cells and genetic manipulation of the smallest bacterial genomes [2, 3]. The proteins within the single limiting membrane of mycoplasmas fulfill many of the critical functions related to morphology, nutrient transport, environmental adaptation and colonisation of the host [4]. Many of the surface proteins of mycoplasmas are amphiphilic

and/or lipid modified and some have been shown to be components of solute transport systems or involved in antigenic variation and adherence, while the functions of many others remain unknown [5–7]. Mycoplasmas possess an unusually large number of lipoproteins, which are anchored to the cell membrane by a lipid moiety, LY3009104 order with the polypeptide moiety exposed on the cell’s outer surface [8]. Lipoprotein signal peptides are cleaved by signal peptidase II at a conserved motif preceding the amino terminal cysteine of the mature lipoprotein. The significance of mycoplasma lipoproteins in interactions with the host emphasises the need to better understand how they are processed, and the mechanisms controlling their expression [4]. Mycoplasma gallisepticum is a major poultry pathogen, causing chronic respiratory disease in chickens, infectious sinusitis in Digestive enzyme turkeys and conjunctivitis in house finches [9, 10]. It has a worldwide distribution and causes severe economic losses in the poultry industry. Vaccination of the flock is a necessity to control mycoplasmosis in commercial poultry

farms. The live vaccines in use at present are F strain, 6/85 and ts-11 [11]. Although effective and widely used at present, these vaccines could be modified to act as vaccine vectors to deliver other antigens and thus be the basis of multivalent vaccines. Although the genome of M. gallisepticum strain Rlow has been sequenced [12], the lack of genetic systems for mycoplasmas in general impedes our ability to study their molecular biology. The use of UGA as a tryptophan codon in mycoplasmas also makes it tedious to use heterologous hosts such as Escherichia coli for expression and characterisation of cloned mycoplasma sequences [13]. Molecular tools such as H 89 datasheet reporter gene systems suitable for studying lipoprotein processing and expression in mycoplasmas are necessary. The E. coli ß-galactosidase gene (lac Z) has been used to identify gene promoters and detect genetic regulatory elements in M.

Comments are closed.