Another T4SS secreted effector, LegK1, activates NFκB directly by

Another T4SS secreted effector, LegK1, activates NFκB directly by phosphorylating NFκB inhibitor IκBα, leading to downstream activation independent of host PRRs [34]. Intestinal pathogens such as Salmonella and Shigella have been shown to activate NFκB in intestinal epithelial cells in a TLR independent manner. For example, Shigella flexneri invades and activates NOD1, which senses bacterial peptidoglycan, leading to IL-8 production AZD8186 [35]. In Salmonella, the T3SS effector SopE activates NFκB [36] by engaging small Rho GTPases CDC42 and Rac1, which in turn trigger NOD1 and RIP2 activation

of NFκB [25]. Another Salmonella T3SS effector protein SipA was also found to activate NFκB via NOD1/NOD2 signalling pathway that proceeds through RIP2 [37]. In contrast, it cannot be definitively check details determined in Yersinia whether the T3SS cargo or translocon pore is responsible for activating NFκB [13]. In this study, we have shown that B. pseudomallei and B. thailandensis T3SS3 do not directly activate NFκB in any significant way in HEK293T epithelial cells. T3SS3 is necessary for efficient escape of bacteria from endosomal/phagosomal compartments into the cytosol at early time-points, although some escape may occur with low efficiency at later learn more time-points independently

of T3SS3 [8]. Although the direct delivery of T3SS3 mutants was done only with B. thailandensis, the time course of MNGC formation and NFκB activation of B. pseudomallei ∆bsaM mutants, and the similarity in various parameters between the two species in our experiments as well

as what has been reported in the literature [23, 26] would support our Casein kinase 1 conclusion. In contrast to what has been found for Salmonella, known T3SS3 effectors are not essential for NFκB activation by Burkholderia. This is supported by several lines of evidence: T3SS mutant bacteria exhibit delayed but significant NFκB activation at later time-points, corresponding to their escape into the cytosol; overexpressed T3SS3 effectors do not activate NFκB; and direct delivery of bacteria into the cytosol via nanoblade injection obviates the need for T3SS3 in NFκB activation even at early time-points. Thus, the key event triggering NFκB activation is the presence of Burkholderia in the cytoplasm. We have not completely ruled out the possibility that unknown T3SS3 effectors secreted by other T3SSs in the absence of T3SS3 may partly be responsible for the NFκB activation we see, but even if this is true, it likely plays a minor role as the activation would not have depended so much on the cytosolic presence of the bacteria.

Comments are closed.