AT read the final manuscript All the authors read and approved t

AT read the final manuscript. All the authors read and approved the final manuscript.”
“Background Homo- and hetero-hierarchical

nanostructures (NSs) consist of two or more materials in the family of nanostructures have become one of the most intensively studied topics in the field of nanotechnology. Nanoparticles (NPs), nanowires (NWs) (including nanorods and nanowhiskers), nanolayers (NLs) (including nanoflakes and nanowalls), and other types of fundamental building blocks consist of a single material-NSs have been uncovered, synthesized, and studied for more than few decades ago. The next level of study based on hierarchical NSs is the combination/integration of more than one type of fundamental building blocks as mentioned CH5183284 nmr above which may consist of more than one material. Many researchers’ works

for applications of hierarchical NSs actually show better performance compared with the primary building block NSs [1–3]. Those applications include hybrid nanoelectronic, nano-optoelectronic, nanomechanical, and electrochemical devices. Recently, the characterization and implementation of hierarchical NSs in photoelectrochemical Metabolism inhibitor (PEC) cell has been widely explored [4, 5]. Hierarchical core-shell or trunk-branch NSs are expected to give better performance to the photocurrent. Those are commonly addressed as photoconductors. A photoconductor is a device which will conduct electricity when exposed to light. Infrared detectors, optical imaging devices, photodetectors, photovoltaics, optical switches, biological and chemical sensing photocopiers, and optical receivers for fiber-optic communication all rely on the characteristic of a photoconductor. In the scale of nanometer, scientists believe that photoconductors will provide better answer for nanoelectronics, nano, and molecular scaled optical-related devices. Basically, photocurrent could be sourced from two major

mechanisms, namely photovoltaic and PEC processes. In photovoltaic process, photon from sun Phosphoribosylglycinamide formyltransferase light generates free electron-hole pairs where they are then collected at the electrode, and electrical power could be extracted at the external circuit. For PEC process, absorbed photons are used to excite electrons and the excited electrons will drive the chemical reaction. One of the common examples for the second process is water splitting to generate hydrogen. For visible light detection, Si as a group IV semiconductor material, is well-established due to its compatibility with CMOS process. It has been well-understood and studied. Up to date, some numbers of Si-based nanowires photoconductive devices have been studied [6–10]. Metal oxide NWs are also another important type of photosensitive materials. One of the most intensively studied materials is zinc oxide (ZnO) nanostructure. Its unique properties on magnetic, mechanical, optical, and the recent spintronics provide further opportunities on a wide variety of applications.

Comments are closed.