Previous
results have suggested that a key function of pp28 in the envelopment of infectious HCMV is expressed after the protein localizes in the assembly compartment (AC). In this study, we investigated the potential this website role of pp28 multimerization in the envelopment of the infectious virion. Our results indicated that pp28 multimerized during viral infection and that interacting domains responsible for self-interaction were localized in the amino terminus of the protein (amino acids [aa] 1 to 43). The results from transient-expression and/or infection assays indicated that the self-interaction took place in the AC. A mutant pp28 molecule containing only the first 35 aa failed to accumulate in the AC, did not interact with pp28 in the AC, and could not support virus replication. In contrast, the first 50 aa of pp28 was sufficient for the self-interaction within the AC and the assembly of infectious virus. Recombinant viruses
encoding an in-frame deletion of aa 26 to 33 of pp28 were replication competent, whereas infectious virus was not recovered from HCMV BACs lacking aa 26 SHP099 to 43. These findings suggested that the accumulation of pp28 was a prerequisite for multimerization of pp28 within the AC and that pp28 multimerization in the AC represented an essential step in the envelopment and production of infectious virions.”
“The pathophysiological underpinnings of bipolar disorder are not fully understood. However, they may be due in part to changes in the phosphatidylinositol second messenger system selleck chemical (PI-cycle) generally, or changes in myo-inositol concentrations more specifically. Dextroamphetamine has been used as a model for mania in several human studies as it causes similar subjective and
physiological symptoms. We wanted to determine if dextro-amphetamine altered myo-inositol concentrations in vivo as it would clearly define a mechanism linking putative changes in the PI-cycle to the subjective psychological changes seen with dextro-amphetamine administration. Fifteen healthy human volunteers received a baseline scan, followed by second scan 75 min after receiving a 25 mg oral dose of dextro-amphetamine. Stimulated echo proton magnetic resonance spectroscopy (MRS) scans were preformed at 3.0 Tesla (T) in the dorsal medial prefrontal cortex (DMPFC). Metabolite data were adjusted for tissue composition and analyzed using LCModel. Twelve adult male rats were treated acutely with a 5-mg/kg intraperitoneal dose of dextro-amphetamine. After 1 h rats were decapitated and the brains were rapidly removed and frozen until dissection. Rat brains were dissected into frontal, temporal, and occipital cortical areas, as well as hippocampus. Tissue was analyzed using a Varian 18.8 T spectrometer. Metabolites were identified and quantified using Chenomx Profiler software.