The femoral artery and vein were cannulated for arterial pressure and heart rate measurement and drug infusion, respectively. The rats were exposed to sidestream cigarette smoke for 180 minutes/day, 5 days/week for 3 weeks (CO: 100-300 ppm). The baroreflex was tested using a pressor dose of phenylephrine (8 mu g/kg,
bolus) and a depressor dose of sodium nitroprusside (50 ABT-737 mouse mu g/kg, bolus). Cardiovascular responses were evaluated before and 5, 15, 30 and 60 minutes after injection of a catalase inhibitor (3-amino-1,2,4-triazole, 0.001 g/100 mu L) into the 4th V.
RESULTS: Vehicle administration into the 4th V did not affect the cardiovascular response, whereas administration of the central catalase inhibitor increased the basal HR and attenuated the bradycardic peak (p<0.05) to a greater extent in WKY rats exposed to sidestream cigarette smoke than in WKY rats exposed to fresh air. However, in spontaneously hypertensive rats, the effect of the catalase inhibitor treatment was stronger in the fresh air condition (p<0.05).
CONCLUSION: Administration of a catalase inhibitor into the
4th V combined with exposure to sidestream cigarette smoke has a stronger effect in WKY rats than in SH rats.”
“Discontinuous airlift mixing was realized by injecting pressured air at time intervals with a frequency between 0.033 and 0.25 Hz (at 80 kPa; i.e., every 4-30 s; valve opening time 800 ms) into
outdoor flat panel photobioreactors (). This caused a flow velocity PLX-4720 cell line between 2 and 20 cm s(-1) of the culture medium within the photobioreactor and the mixing time was between 38 and 103.5 s, requiring 0.175-1.340 L-gas volume L (photobioreactor volume) (-1) min(-1) pressured air. In order to detect the effect on growth of Scenedesmus obliquus during outdoor experiments and to be able to compare obtained results, a batch run with an airlift frequency of 0.25 Hz was simultaneously used as control. Growth at different airlift frequencies was measured by the increase selleck inhibitor of cell dry weight (CDW) during 3-5 days and biomass yield on light energy was calculated. With increasing airlift frequencies, growth increased from 52 to 91 % compared to the control. When CDW was at around 1.0-1.5 g L-1, airlift frequency had no effect on growth, indicating that mass transfer gradients of nutrients and gas were not the limiting factors of growth. Above 1.5 g CDW L-1, growth increased with increasing airlift frequency and light limitation for a single cell occurred. This effect was observed during low and high irradiance and it is concluded that a higher mean flow causes a better light distribution, resulting in an enhanced growth. Biomass productivity and demand of pressured air are correlated logarithmically, which enables to save mixing energy during cultivation.