2A), suggesting that the SA1-8 chromosome remained linear, wherea

2A), suggesting that the SA1-8 chromosome remained linear, whereas SA1-6 possessed a circular chromosome. Figure 2 PFGE analysis of the chromosomes of S. avermitilis strains. (A) PFGE of intact chromosome treated with Proteinase K (PK) and SDS. (B) PFGE analysis of AseI digested chromosome with PK and SDS treatment, showing that fragment NA2 is a new end bound to terminal VE-822 datasheet protein. PFGE conditions for (A) were: 1% agarose, 3 V/cm, 180 s pulses, 20 h. Conditions for SA1-8 and wild-type in (B) were the same as for Fig 1B and

1C, respectively. “”+”" represents DNA sample treated with PK; “”-” represents DNA sample treated with SDS. Chromosomal arm replacement and internal deletions in SA1-8 chromosome In comparison to the AseI profile of wild-type, fragments W and A on the left

chromosomal arm of SA1-8 were missing, and there were two BMN 673 in vitro novel fragments, which we termed NA2 and NA3 (Fig. 1D). To test whether the deletion of the W fragment SN-38 in vivo included the left chromosomal terminus, we used probe W (754-1653 nt, relative to left first nucleotide of the chromosome defined as 1 nt) located on the left terminus, to hybridize onto the PstI pattern of genomic DNA. The wild-type strain showed a predicted 1.6-kb restriction fragment, whereas SA1-8 showed no apparent hybridization signal (Additional file 1: Supplementary Fig. S2A), indicating that the left terminus was deleted. On the other hand, the right extremity was still conserved, since hybridization with probe Dr (196-bp away from the last nucleotide) showed that the terminal 4.7-kb BamHI fragment was present in both wild-type and SA1-8 (Additional file 1: Supplementary Fig. S2B). Although SA1-8 lost the ability to produce avermecetins, the avermectin biosynthetic gene cluster, located within AseI-A, could be specifically amplified by PCR (data not shown), indicating that fragment A was not deleted completely. To determine the remnant of fragment A, probe aveC (1,168,000-1,169,000

nt) in the ave gene cluster was amplified and labeled. Hybridization with this probe, surprisingly, revealed a GPX6 new band (termed NA1) overlapping with fragment C (875-kb) (Fig. 1D and 3A). Fragment NA1 was also detected by the right terminal probe Dr, which hybridized with fragment D in wild-type (Fig. 3A). These results suggest that the right end replaced the left end and joined the undeleted part of AseI-A to form the novel left terminal fragment NA1. Figure 3 Southern hybridization analysis of chromosomal rearrangements in SA1-8 (A, B) and schematic representation of the chromosomes of wild-type strain and mutant SA1-8, showing three independent rearrangements (C).

Comments are closed.