“
“Canonical Notch signaling is thought to control the endocrine/exocrine
Alvocidib decision in early pancreatic progenitors. Later, RBP-J kappa interacts with Ptf1a and E12 to promote acinar differentiation. To examine the involvement of Notch signaling in selecting specific endocrine lineages, we deregulated this pathway by targeted deletion of presenilin1 and presenilin2, the catalytic core of gamma-secretase, in Ngn3- or Pax6-expressing endocrine progenitors. Surprisingly, whereas Pax6(+) progenitors were irreversibly committed to the endocrine fate, we discovered that Ngn3(+) progenitors were bipotential in vivo and in vitro. When presenilin amounts are limiting, Ngn3(+) progenitors default to an acinar fate; subsequently, they expand rapidly to form the bulk of the exocrine pancreas. gamma-Secretase inhibitors confirmed that enzymatic activity Nirogacestat in vivo was required to block acinar fate selection by Ngn3 progenitors. Genetic interactions identified Notch2 as the substrate, and suggest that gamma-secretase and Notch2 act in a noncanonical titration mechanism to sequester RBP-J kappa away from Ptf1a, thus securing selection of the endocrine fate
by Ngn3 progenitors. These results revise the current view of pancreatic cell fate hierarchy, establish that Ngn3 is not in itself sufficient to commit cells to the endocrine fate in the presence of Ptf1a, reveal a noncanonical action for Notch2 protein in endocrine cell fate selection, and demonstrate that acquisition of an endocrine fate by Ngn3(+) progenitors is gamma-secretase-dependent until Pax6 expression begins.”
“Synthetic steroid hormones from contraceptive pharmaceuticals have become global aquatic contaminants. Progestins, the synthetic analogs to progesterone, are receiving increasing buy Dihydrotestosterone attention as contaminants and have been shown to impair reproduction in fish and amphibians at
low ng L-1 concentrations. Certain progestins, such as levonorgestrel have androgenic properties and seem to be several orders of magnitude more potent in terms of reproductive impairment in fish than non-androgenic progestins and progestagens. We recently reported that levonorgestrel has strong androgenic effects in female three-spined sticklebacks (Gasterosteus aculeatus), including induction of the normally male-specific glue protein spiggin and suppression of vitellogenesis. In light of this we investigated if exposure to levonorgestrel could disrupt the highly androgen-dependent seasonal reproductive cycle in male sticklebacks. Male sticklebacks that were in the final stage of a breeding period were exposed to various concentrations of levonorgestrel for six weeks in winter conditions in terms of light and temperature, after which reproductive status was evaluated from gross morphology, histology and key gene transcript levels.