“
“Hepatitis C Virus (HCV) entry involves at least four cellular factors, including CD81, the scavenger receptor class B type I (SCARB-1), occludin (OCLN), and claudin-1 (CLDN1). In addition, CLDN6 and CLDN9 have been shown to substitute for CLDN1 as HCV entry factors in human nonliver cells. We examined the role
of different CLDN proteins during HCV entry by using cell lines expressing either predominantly CLDN1 (Huh-7.5) or CLDN6 (HuH6). Huh-7.5 cells were susceptible to all tested HCV isolates, whereas HuH6 cells were only permissive to some viral strains. Silencing of CLDN6 in HuH6 cells revealed that these cells are infected in a CLDN6-dependent fashion, and ectopic expression of CLDN1 or CLDN6 in 293T cells lacking endogenous CLDN Idasanutlin supplier expression confirmed that only some this website HCV strains efficiently use CLDN6 for infection. CLDN1-specific neutralizing antibodies (Abs) fully abrogated infection of Huh-7.5 cells by isolates that use CLDN1 only, whereas viruses with broad CLDN tropism were only partially inhibited by these Abs. Importantly, infection by these latter strains in the presence of anti-CLDN1
Ab was further reduced by silencing CLDN6, suggesting that viruses with broad CLDN usage escape CLDN1-specific Abs by utilization of CLDN6. Messenger RNA (mRNA) levels of HCV entry factors in liver biopsies of HCV patients infected with different genotype and with variable degree of liver fibrosis were determined. Uniformly high levels of CD81, SCARB-1, OCLN, and CLDN1 mRNA were detected. In contrast, abundance of CLDN6 mRNA was
highly variable between patients. Conclusion: These findings highlight differential CLDN usage by HCV isolates, which may evolve based on variable expression of CLDN proteins in human liver cells. Broad CLDN tropism may facilitate viral escape from CLDN1-specific therapeutic strategies. (Hepatology 2014;58:24–34) Hepatitis C virus (HCV) is a highly variable, plus-strand RNA virus of the family Flaviviridae and a leading cause of liver disease, including fibrosis, cirrhosis, and hepatocellular carcinoma.[1] Farnesyltransferase The pronounced variability of HCV facilitates viral immune evasion and is attributable to enormous replication rate and error-prone RNA replication. Seven genotypes (GTs) and multiple subtypes are known, with genetic diversity being in the order of more than 30% between individual viral GTs.[2] Although the basic genome structure is conserved among HCV GTs, there are remarkable genotype-dependent differences with regard to treatment response and pathophysiology of the infection. For instance, GTs 1 and 4 exhibit inferior response rates, when compared with GTs 2 and 3, in interferon-based therapy regimens, and GT3 virus infection shows a particularly strong association with liver steatosis.