Recent thymic emigrant numbers were also reduced significantly in CVID patients, specifically in the PL, AC and OSAI subgroups; CVID patients with such complications treated with corticosteroids were Buparlisib datasheet excluded if they had received such therapy within 6 months of analysis. Together with the reduced CD4 naive T cells, reduced thymic emigrants suggest a lack of replenishment of the CD4 T cell pool by new thymically derived cells in CVID patients. Giovannetti et al. [24] also found that thymic output was reduced significantly in CVID patients, and associated this with a reduction in class-switch memory B cells, expansion
of CD21lo B cells, splenomegaly and granuloma. They also showed increased cell turnover as measured by Ki-67, particularly in the CD4 naive subset and increased apoptosis [24]. We did not find such an association with CD21low B cells, although we found an association with PL for which granuloma is a criterion. Mouilott et al. [25] found a decrease in CD4 naive T cells which was accompanied by increased CD95+ expression, Dasatinib most pronounced in the PL and AC groups, while Iglesias et al. [28] found that CD4+CD45RA+ T cells, which contain predominantly naive CD4 T cells, had increased spontaneous apoptosis and CD95 expression in CVID
patients. Therefore, the reduction in naive CD4 T cells may, in part, be due to both reduced thymic output and increased cell turnover. Significant reductions in CD8 naive T cell numbers were seen in CVID patients compared to controls, particularly in the AC group. This has not been reported previously, and is likely to reflect the increases in terminally differentiated CD8 cells observed
in Metalloexopeptidase the PL and AC groups. Both CD4 and CD8 T cells in CVID patients, and most significantly in the AC, OSAI and PL groups, demonstrated a loss of the co-stimulatory molecules CD28 or CD27. This suggests T cell differentiation along an activation pathway. Other groups have observed increased activation in T cells of all CVID patients [25], as measured by CD38 and human leucocyte antigen D-related (HLA-DR) [24], particularly in patients with splenomegaly [26]. The possibility of an infectious agent driving the clinical manifestations of lymphoproliferation observed in the PL subset of CVID patients has been suggested, but not established – a hypothesis supported by these T cell phenotypes. It has been suggested that cytomegalovirus (CMV) may play a role in the T cell abnormalities seen in CVID, as patients in one study had a 13-fold increased proportion of CMV-specific, functional T cells compared to aged-matched controls [29]. CMV-specific CD8 T cells have the phenotype of CD45RA+CCR7-CD27- and the increase in CD8 T cells of this phenotype in the PL and AC subgroups of the CVID suggests that CMV or another similar infectious agent may be important [17,30].