The apparent lack of response to stimulation raises the possibility that VAMP7+ resting pool vesicles may correspond to a population of membranes other than synaptic vesicles, with heterologous expression resulting in mislocalization to the recycling pool. Previous work has indeed suggested that VAMP7 may localize to only a subset
of presynaptic terminals such as hippocampal mossy fibers (Coco et al., 1999 and Muzerelle et al., 2003). However, recent work has demonstrated the localization of VAMP7 to synaptic vesicles (Newell-Litwa U0126 chemical structure et al., 2009), and a proteomic analysis of purified synaptic vesicles from whole brain also identified VAMP7 (Takamori et al., 2006). In addition, we confirm the localization of endogenous VAMP7 to presynaptic PI3K inhibitor sites by immunofluorescence and to synaptic vesicles
by density gradient fractionation and immunoisolation. Ultrastructural analysis of the VAMP7+ vesicles labeled with lumenal HRP further shows that they exhibit the typical small, round appearance of synaptic vesicles. Morphologically indistinguishable recycling and resting pool vesicles thus exhibit quantitative differences in protein composition. What is the physiological role of the resting pool? Spontaneous release from this pool may contribute to structural changes such as process extension (Martinez-Arca et al., 2000). Recent work has also implicated spontaneous release in the regulation of synaptic strength (McKinney et al., 1999 and Sutton and Schuman, 2006), suggesting additional roles in development and plasticity. Although the relatively small proportion of VGLUT1 (∼40%) localized to the resting PIK-5 pool might suggest that this pool does not subserve transmitter release, we have recently observed
that like VAMP7, the vesicular monoamine transporter VMAT2 that fills synaptic vesicles with monoamines also shows preferential localization to the resting pool (Onoa et al., 2010). The pools may thus be specialized for the release of different transmitters, and the recent evidence for differential release of acetycholine and GABA from retinal starburst amacrine cells is consistent with this possibility (Lee et al., 2010). In addition, spontaneous release of synaptic vesicles may contribute to synapse growth (Huntwork and Littleton, 2007) or the endosomal trafficking of receptors and channels. Preferential localization of VAMP7 to resting rather than recycling synaptic vesicles presumably reflects differences in the formation of different pools. Recycling pool vesicles are generally considered to form through clathrin- and AP2-dependent endocytosis (Di Paolo and De Camilli, 2006, Granseth et al.