We showed that in vitro treatment of spleen cells with recombinan

We showed that in vitro treatment of spleen cells with recombinant guinea pig TNF-α (rgpTNF-α) and neutralizing anti-gpTNF-α anti-serum modulated antigen-specific T cell proliferation in guinea pigs [20,21]. Injection of anti-TNF antibody into bacille Calmette–Guérin

(BCG)-vaccinated and non-vaccinated guinea pigs following low-dose aerosol challenge with virulent M. tuberculosis resulted in splenomegaly in the BCG-vaccinated guinea pigs, while it augmented splenic granuloma organization in the non-vaccinated guinea pigs [22]. Furthermore, direct intrapleural injection of anti-TNF antibody into guinea pigs with tuberculous pleuritis altered the inflammatory exudates by decreasing the proportions of macrophages and increasing the neutrophil and lymphocyte proportions [23]. The purpose click here of this https://www.selleckchem.com/products/Y-27632.html study was to determine whether administration of rgpTNF-α into guinea pigs would mimic the effects as demonstrated in our in vitro studies and whether recombinant TNF-α would enhance immune responses induced by BCG vaccine. Our results indicate clearly that low doses of TNF-α, a major player in both innate and specific acquired immunity, could augment BCG vaccine-induced immunity in the guinea pig, a relevant model that mimics human tuberculosis in terms of tissue pathology, protection afforded by BCG vaccination and granuloma organization.

Random-bred Hartley strain guinea pigs weighing 250–350 g obtained from Charles River Breeding Laboratories, Inc. (Wilmington, MA, USA) were used for this study. The animals were housed individually in polycarbonate cages in a temperature- and humidity-controlled environment

with a 12-h light/12-h dark cycle. They were given commercial chow (Ralston Purina, St Louis, MO, USA) and tap water ad libitum. All procedures were reviewed and approved by the Texas A&M University Laboratory Animal Care Committee. Two groups of guinea pigs were vaccinated intradermally with 1 × 103 colony-forming units (CFU) of M. bovis BCG (Danish 1331 strain; Statens Seruminstitut, Copenhagen, Denmark) each in the left and right inguinal regions. The lyophilized vaccine was reconstituted with Sauton’s medium (Statens Seruminstitut) for injection. Beginning immediately after vaccination, the animals were injected intraperitoneally Cyclic nucleotide phosphodiesterase with either rgpTNF-α (25 µg/animal) or 1% bovine serum albumin (BSA) for a total of 12 injections given every other day. The recombinant TNF-α protein was expressed in a prokaryotic vector using the M15 Escherichia coli strain transformed with pQE-30/gpTNF-α[24]. The functional properties of rgpTNF-α, including bioactivity, were determined by measuring the cytotoxicity on L929 cells and cytokine mRNA expression by real time-reverse transcription–polymerase chain reaction (RT–PCR) and the anti-mycobacterial activity of macrophages by metabolic labelling of M.

Recent thymic emigrant numbers were also reduced significantly in

Recent thymic emigrant numbers were also reduced significantly in CVID patients, specifically in the PL, AC and OSAI subgroups; CVID patients with such complications treated with corticosteroids were Buparlisib datasheet excluded if they had received such therapy within 6 months of analysis. Together with the reduced CD4 naive T cells, reduced thymic emigrants suggest a lack of replenishment of the CD4 T cell pool by new thymically derived cells in CVID patients. Giovannetti et al. [24] also found that thymic output was reduced significantly in CVID patients, and associated this with a reduction in class-switch memory B cells, expansion

of CD21lo B cells, splenomegaly and granuloma. They also showed increased cell turnover as measured by Ki-67, particularly in the CD4 naive subset and increased apoptosis [24]. We did not find such an association with CD21low B cells, although we found an association with PL for which granuloma is a criterion. Mouilott et al. [25] found a decrease in CD4 naive T cells which was accompanied by increased CD95+ expression, Dasatinib most pronounced in the PL and AC groups, while Iglesias et al. [28] found that CD4+CD45RA+ T cells, which contain predominantly naive CD4 T cells, had increased spontaneous apoptosis and CD95 expression in CVID

patients. Therefore, the reduction in naive CD4 T cells may, in part, be due to both reduced thymic output and increased cell turnover. Significant reductions in CD8 naive T cell numbers were seen in CVID patients compared to controls, particularly in the AC group. This has not been reported previously, and is likely to reflect the increases in terminally differentiated CD8 cells observed

in Metalloexopeptidase the PL and AC groups. Both CD4 and CD8 T cells in CVID patients, and most significantly in the AC, OSAI and PL groups, demonstrated a loss of the co-stimulatory molecules CD28 or CD27. This suggests T cell differentiation along an activation pathway. Other groups have observed increased activation in T cells of all CVID patients [25], as measured by CD38 and human leucocyte antigen D-related (HLA-DR) [24], particularly in patients with splenomegaly [26]. The possibility of an infectious agent driving the clinical manifestations of lymphoproliferation observed in the PL subset of CVID patients has been suggested, but not established – a hypothesis supported by these T cell phenotypes. It has been suggested that cytomegalovirus (CMV) may play a role in the T cell abnormalities seen in CVID, as patients in one study had a 13-fold increased proportion of CMV-specific, functional T cells compared to aged-matched controls [29]. CMV-specific CD8 T cells have the phenotype of CD45RA+CCR7-CD27- and the increase in CD8 T cells of this phenotype in the PL and AC subgroups of the CVID suggests that CMV or another similar infectious agent may be important [17,30].

Histopathological analysis of the MSG biopsies from 48 patients w

Histopathological analysis of the MSG biopsies from 48 patients with pSS showed a different degree of FLS, defined as focus score, for those with normal biopsy, or abnormal, as indicated in Table 1. Histopathological analysis of labial biopsies of 40 control subjects show different degrees of CS, as shown in Table 4. We observed that 40% of pSS

patients with FLS < 1 showed clonal IgH rearrangements compared with patients who had an abnormal biopsy (FLS ≥ 1), in some cases reaching 100%, as shown in Table 4. This difference was statistically significant (P < 0·01; χ2 test, 99% CI). In addition, we determined that 83·4% of the cases with pSS presented an oligo–monoclonal IgH rearrangement Rapamycin cost compared with 19% of the cases diagnosed with CS. There was a high correlation in control cases between the severity of CS and the presence of B cell clonality (Table 4). Seven VX-809 datasheet cases with severe CS showed B cell oligo–monoclonality compared with those diagnosed with mild to intermediate CS (87·5 versus 3·1%; P < 0·01; χ2 test). The biopsy was completely normal in only two cases and we did not detect a clonal IgH gene rearrangement by PCR (Table 4). Our results showed 58% and 79% of B cell clonality or oligoclonality, respectively, in the MSG of SS patients using FR3/LJH and FR2/LJH-VLJH primers. Similar results have been reported in the literature, where 77% of cases with NHL were PCR-positive, arguing that the

low detection of clonal B cells is due to partial rearrangements, inversions, somatic mutations or deletions

that can be missed by PCR [26]. The addition of FR1c-LJH primers to our PCR analysis allowed a higher detection rate of SS cases, as reported previously by Aubin and co-workers [17]. Therefore, the use of the three sets of primers diminished the false negative results and improved the detection rate in 86·7% of the SS patients (Table 3). Also, we observed that the addition of FR3 did not increase the number of positive cases, therefore the failure of FR3 or FR2 to detect clonality in some cases could be the acquisition of somatic mutations in the primer target sequences, due to mispriming during the PCR [11,12,15,26]. Another possibility is that the IgH gene rearrangement is related closely to the cellular triclocarban origin involved in the lymphoid pathology. In these cases, absence of clonality for the FR3-VLJH primers would indicate the presence of post-GC B cells or memory B cells in the salivary glands, characterized by cells bearing somatically hypermutated VH genes, as has been found in a series of studies in NHL and MALT [10,28,29]. It has been determined that patients with SS have a 16-fold increased risk of developing lymphoma [5,30]. Several studies have suggested that lympho-epithelial lesions in SS patients show a high presence of clonal expansion of B cells, as determined by molecular analysis of the IgH rearrangement, morphological or immunophenotypic determination.

DENV isolates passed serially from brain to brain led to increase

DENV isolates passed serially from brain to brain led to increased neurovirulence and neurotropism in mice[44] and a clear attenuation in human volunteers.[45] However, viral encephalitis is not a major clinical symptom in human dengue disease, as nervous system involvement in DENV infections is

rare and few cases are reported.[46] The IFN system is critical to the host antiviral response, which led to the use of AG129 mice, which are type I and II IFN-R-deficient 129 mice, immune deficient and highly susceptible.[47] Intraperitoneal infection with the mouse-adapted neurotropic DENV-2 strain, New Guinea C, led to 100% lethality in AG129 mice, all of them presenting paralysis.[48] The neuroinflammatory changes led to alterations in motor behaviour and muscle tone and strength in DENV-3-infected mice. The neuroinflammatory process was marked by up-regulation of the chemokines Epigenetics inhibitor CCL2, CCL5, CXCL1 and CXCL2, and of the cytokines TNF-α and IFN-γ, which occurs in parallel with increased leucocyte rolling and adhesion in meningeal vessels and infiltration of immune cells into the brain.[49] In summary, even if these models were used to study antiviral compounds or behaviour, the major limitation involving immune-compromised mice is that paralysis is not a major clinical observation in DENV infection. Initial tropism studies using the

AG129 (IFN type I and II receptor-deficient) model demonstrated that clinical isolates from all four DENV serotypes replicate BGB324 nmr efficiently in spleen, lymph node, bone marrow and muscle.[50] Negative-strand

viral RNA was detected in dendritic cells and macrophages of the lymph node and spleen.[50] To develop an experimental model where viral encephalitis was not the major clinical observation, Shresta et al.[47] infected AG129 mice intravenously with the DENV-2 strain PL046. Infected AG129 mice succumbed to DENV infection, RNA Synthesis inhibitor presenting increased levels of TNF-α and vascular leakage syndrome. AG129 mice are able develop cross-reactive and long-lasting antibody responses to DENV.[51] Sequential DENV infection in AG129 mice results in decreased viral load of the second serotype and full protection against lethal infection. AG129 and other mouse strains have been used to study ADE by passive transfer of anti-DENV monoclonal antibodies, cross-reactive immune serum, or diluted homotypic serum before infection.[52, 53] Mortality was associated with vascular leakage syndrome, high levels of TNF-α and thrombocytopenia, similar to the clinical findings observed in DHF/DSS in humans. No memory response was observed in mice receiving passive transfer of serum or antibody. Hence, models of sequential DENV infection may be useful to study ADE in the presence of a cellular memory immune response.

3A) The MFG-E8 transcript that included the cryptic exon encoded

3A). The MFG-E8 transcript that included the cryptic exon encoded an MFG-E8 protein that was truncated at the C2 domain (designated as C2del) (Fig. 3A). Studies on mouse and bovine MFG-E8 show that the C1/C2-homologous domains are required for binding to phosphatidylserine 7, 20. To characterize C2del, we prepared human rMFG-E8 using HeLa cell transformants that produced the transgene in a tetracycline-dependent manner. On SDS-PAGE, the purified C2del ran as a smeared band of approximately 50 kDa, which was significantly bigger than the 46-kDa wild-type MFG-E8 (Fig. 3B). This was unexpected considering that C2del had a truncation of 96 amino acids and contained

only one of three N-linked glycosylation sites present in the wild-type protein. The treatment of C2del with PNGase 5-Fluoracil manufacturer F reduced its molecular weight to 32.6 kDa (Fig. 3C), and a mutation of the remaining N-glycosylation site (Asn238) also reduced its molecular weight (data not shown). Neuraminidase treatment significantly reduced C2del’s molecular weight (Fig. 3D), indicating that it was sialylated. These results suggested that this C-terminal Bortezomib mouse truncation of human MFG-E8 caused it to be aberrantly glycosylated. We next examined the

ability of C2del to recognize apoptotic cells. As shown in Fig. 3E, C2del dose-dependently bound to phosphatidylserine. The dissociation constants (Kd) determined by Biacore for the wild-type and C2del MFG-E8 heptaminol were 1.1 and 8.0 nM, respectively. C2del supported phagocytosis with a bell-shaped dosage effect and the same dose dependency as the wild-type molecule (Fig. 3F). However, the ability of C2del to enhance the engulfment at the optimum concentration was consistently lower than that observed with the wild-type MFG-E8. As described above, C2del was aberrantly glycosylated, and in particular, sialylated. The sialylation of proteins is known to prolong their half-life in vivo21, 22. To examine whether this was true for C2del, the wild-type MFG-E8

and C2del proteins were injected into C57BL/6 mice, and their levels in serum were monitored by ELISA. As shown in Fig. 4A, when 12 pmol of the wild-type or mutant MFG-E8 was injected into the tail vein, about 20 pM wild-type MFG-E8 was found in the serum after 60 min, whereas the concentration of C2del was more than 1 nM at the same time point. These results suggested that C2del was sustained longer than the wild-type protein in the blood. We previously showed that excess MFG-E8 prevents the efficient engulfment of apoptotic cells and that some SLE patients carry a significantly increased level of MFG-E8 in their blood 15. Accordingly, the injection of wild-type MFG-E8 into mice induced the development of autoimmune diseases 16. Since C2del lasted longer in vivo than wild-type MFG-E8, we hypothesized that the administration of C2del might cause autoimmune disease in mice at a lower dose than the wild-type molecule. As shown in Fig.

The BCA protein assay (Thermo Fisher) was used to

determi

The BCA protein assay (Thermo Fisher) was used to

determine the protein concentration of each of the cleared lysates. A 30 μg sample of each caecum or colon lysate protein was boiled for 5 min in reducing sample buffer containing DTT and resolved by SDS–PAGE, transferred to PVDF membranes and probed with the indicated antibodies. The membranes were exposed to enhanced chemifluorescence substrate (GE Healthcare, Piscataway, NJ), followed by scanning on a Typhoon Trio+ imaging system (GE Healthcare) to obtain a digital image of the probed protein. The bands were then quantified with ImageQuant software Carfilzomib (GE Healthcare). Caecum and colon snips obtained from untreated and C. difficile-infected mice were homogenized with a rotor/stator-type homogenizer while immersed in TRIzol RNA reagent (Life Technologies, Grand Island, NY). The TRIzol RNA reagent and the RNeasy Mini kit (Qiagen, Valencia, CA) were used in successive steps to isolate RNA from the caecum and colon samples, each according to its manufacturer’s instructions. An Agilent Bioanalyser (Agilent Technologies, Palo Alto, CA) and a Nanodrop instrument (Thermo Fisher) were used to determine Pembrolizumab order the quality and concentration of each RNA isolate, respectively.

Complementary DNA (cDNA) was generated from each RNA sample using the RT2 First Strand kit (Qiagen). Expression levels of the genes under study were determined by using two different sets of mouse RT2 Profiler PCR cards (Qiagen), each custom-made to contain eight replicate sets of

48 primer pairs (Table 1). Each well of the replicate sets was loaded with 5 ng of cDNA reaction product. Each card was run on a LightCycler 480 real-time PCR system (Roche). The relative RNA expression levels were inferred from the Ct values. Xbp1 splicing was assessed as previously described.[39] Briefly, the Superscript III RT-PCR kit (Life Technologies) was used to amplify both unspliced and spliced Xbp1 in RNA samples obtained at the end of the experimental period. The primers used in the assay flanked the Xbp1 intron and had the following sequences: upstream: ttgtggttgagaaccagg; downstream: tccatgggaagatgttctgg. Quantitative RT-PCR, including methods for verifying primer efficiency and specificity, were performed as previously described.[40] The Ct value for each gene Org 27569 of each sample was normalized against the geometric mean of the Gapdh and Hprt for that sample.[41] For the following assays, differences between untreated and C. difficile-infected mice were evaluated for significance by using paired t-tests at P ≤ 0.05: diversity of the bacterial community examined by pyrosequencing; cell numbers obtained by analysing the flow cytometric data; mRNA expression for the UPR genes Gadd34 and Wars obtained by single gene quantitative RT-PCR; and protein expression or phosphorylation assessed by immunoblotting.

In a pilot study, we administered intravenous boluses of a monocl

In a pilot study, we administered intravenous boluses of a monoclonal anti-CD20 antibody (Rituximab) to five patients with active progressive disease, and the results (to be published elsewhere) were very encouraging. Vitiligo, in its primary form, is not a life-threatening disease; however, the cosmetic and, most importantly, the psychological effects of the condition might be overwhelming [38, 39]. Evidence-based therapeutic approaches have rarely been used in this disease, and we trust that our efforts will contribute towards this goal. No personal, institutional or corporate financial R428 in vivo conflicts are involved in the production and publication of this information. “
“Upon receptor activation, the myeloid

C-type lectin

receptor Mincle signals via the Syk-CARD9-Bcl10-MALT1 pathway. It does so by recruiting the ITAM-bearing FcεRI-γ. The related receptor macrophage C-type Lectin (MCL) has also been shown to be associated with Syk and to be dependent upon this signaling axis. We have previously shown that MCL co-precipitates with FcεRI-γ, but were unable to show a direct association, suggesting that MCL associates with FcεRI-γ via another molecule. Here, we have used rat primary cells and cell lines to investigate this missing link. A combination of flow cytometric and biochemical analysis showed that Mincle and MCL form heteromers on the cell surface. Furthermore, association with MCL and FcεRI-γ increased Mincle expression and enhanced phagocytosis of Ab-coated beads. The results presented in this http://www.selleck.co.jp/products/hydroxychloroquine-sulfate.html paper suggest that the Mincle/MCL/FcεRI-γ complex is the functionally optimal form for selleck chemicals these C-type lectin receptors on the surface of myeloid cells. Macrophage inducible C-type lectin (Mincle)

(also called CLEC4E) and macrophage C-type lectin (MCL) (also called CLEC4D) are single-pass transmembrane proteins that belong to the C-type lectin-like domain superfamily, and their genes lie adjacent to each other in the APLEC (antigen-presenting lectin-like complex) gene complex [1] in all species thus far examined. Mincle and MCL are expressed on cells of myeloid origin [2-8]. Mincle is normally expressed at low levels, but receptor levels are increased by exposure to different inflammatory signals [6, 7, 9]. Mincle has been shown to recognize the mycobacterial glycolipid trehalose-6,6-dimycolate (TDM, also called cord factor), present in the cell wall of some Mycobacterium species and considered as a virulence factor [10, 11]. Moreover, Mincle-deficient mice show increased mycobacterial burden following challenge with Bacillus Calmette-Guérin (BCG), suggesting that Mincle has an important in vivo role in the immune response to mycobacteria [12]. In addition, Mincle recognizes a number of pathogenic fungi, particularly Malassezia spp. [7, 8], and the endogenous ligand spliceosome-associated protein 130 released during cell necrosis [9].

trachomatis infection of an immortalized primary endocervical epi

trachomatis infection of an immortalized primary endocervical epithelial cell (A2EN). Our data suggest that NK cells lyse C. trachomatis-infected cells more efficiently at 34 hpi, when secondary differentiation to infectious EB is at an early stage, compared with a later stage (42 hpi). The increased activity of NK cells toward early stage C. trachomatis-infected cells may be beneficial to the host by reducing the levels of infectious EBs that can be released. We also investigated the effect of NK-mediated lysis of C. trachomatis-infected cells on the level of recoverable IFUs. Curiously,

although we observed that the recoverable IFUs decreased in the presence of NK cells, the magnitude this website of this decrease

was smaller than effects on cytolysis efficiency. NK cytolytic activity is primarily mediated by perforin, a pore-forming protein that acts as a channel for entry of granzymes (Reviewed in Lieberman, 2003), both of which are expressed in the NK cell line used here. Granzymes induce apoptosis selleck chemicals llc in target cells, consistent with the membrane blebbing and cytolysis we observed when C. trachomatis-infected A2EN cells were exposed to the NK cell line (NK92MI). Therefore, while NK lysis may deprive C. trachomatis of its intracellular niche, we hypothesize that C. trachomatis may be equipped with a mechanism to survive or escape NK cell-mediated host cell lysis. Thus, we believe that our data warrants further

investigation on the Anidulafungin (LY303366) impact of NK cell activity on C. trachomatis, as this may reveal novel survival mechanisms used by this bacterium against host innate immune response. This capacity of Chlamydia is reminiscent of recent observations made with the sexually transmitted pathogen Neisseria gonorrheae, which is able to escape/suppress the effects of neutrophil-associated oxidative bursts (Johnson & Criss, 2011). Interestingly, while our data and that of Hook et al. (2004) demonstrate increased susceptibility of C. trachomatis-infected cells to NK cell lysis, Mavoungou et al. (1999) have demonstrated that NK cells purified from the peripheral blood of C. trachomatis-infected patients have reduced IFNγ release and lytic capacity. These patients included those with genital and nongenital C. trachomatis serovars. Discrepancies among existing human studies on the role of NK cells in clearing C. trachomatis may reflect heterogeneity among NK cell receptors and their host-expressed ligands. Gene polymorphism in the site encoding the human activating NK cell receptor, NKG2D, has been shown to influence NK cell activity and susceptibility to some infectious diseases (Ma et al., 2010). Polymorphisms in human MICA have also been reported and may alter susceptibility to NK cell lysis (Ahmad et al., 2002; Karacki et al., 2004; Tosh et al., 2006). In light of the recent findings by Mei et al. (2009) that C.

Results:  Of 133 927 children, a total of 176 children had NS, wh

Results:  Of 133 927 children, a total of 176 children had NS, which incurred 508 hospital admissions. Nineteen percent of admissions were associated with major infections. Pneumonia was the most common infection (49%), followed by urinary tract infection (UTI), bacteraemia/sepsis, peritonitis and cellulitis. Pneumonia was the most common infection among children age younger than 10 years, whereas UTI was more common among children aged greater than 10 years. NS admission with infections www.selleckchem.com/JNK.html had

longer periods of hospital length of stay and higher hospital total costs compared to those without infections. Regression analysis reveals that younger age, regional hospitals, admission hospital located in middle and south areas and admission made Talazoparib in spring were associated with increased risk for developing major infections. Conclusions:  While 19% of childhood NS admissions were associated with major infections, young age, admissions made in spring, located in middle and south Taiwan and in regional hospitals were the major associated factors for infection. Age plays an important role in risk and types of infection. “
“Aim:  Cardiovascular disease is the most common cause of death in patients undergoing dialysis. The accuracy of multidetector computed tomography (MDCT) for detecting

coronary disease has not been determined, and little information is available regarding the performance of MDCT in patients undergoing dialysis. Methods:  Twenty-nine patients undergoing dialysis were analyzed and MDCT and coronary angiography (CAng) were performed consecutively. The coronary arteries were divided into four segments for analysis. We compared the significant stenosis lesions (≥50% luminal narrowing) identified by MDCT with those found by CAng. The total coronary artery calcium (CAC) score was determined by summing the individual lesion scores from each of the coronary branches. Results:  One hundred and sixteen

Lonafarnib chemical structure coronary artery branches in 29 patients were analyzed. The sensitivity, specificity, and positive and negative predictive values of MDCT for detecting significant coronary artery stenosis (≥50% stenosis) were 68%, 94%, 71% and 93%, respectively. The CAC scores were significantly higher in subjects with coronary artery disease (CAD) (514.0 ± 493.6 vs 254.3 ± 375.3, P = 0.05). The severe CAC score (>500) was related to the presence of significant CAD (P = 0.05) and the sensitivity and specificity for detecting significant CAD were 50% and 80%, respectively. Conclusion:  MDCT is a useful and non-invasive approach for detecting or excluding CAD in patients undergoing dialysis. “
“Aim:  To demonstrate that the evaluation of erythrocyte dysmorphism by light microscopy with lowering of the condenser lens (LMLC) is useful to identify patients with a haematuria of glomerular or non-glomerular origin.

The uptake levels of FSL-1 by the cells were analysed by using FC

The uptake levels of FSL-1 by the cells were analysed by using FCM as described above and assessed by change AZD6738 price in the mean fluorescence intensity (MFI). For an assay using a confocal laser scanning microscope (CLSM, LSM510 invert Laser Scan Microscope, Carl Zeiss,

Tokyo, Japan), a 2-ml suspension of the cells (1 × 105/ml) was added to each well of a six-well plate and incubated at 37° for 24 hr. Then the cells were washed three times at 37° with appropriate base medium and incubated with FITC-FSL-1. The cells were washed with PBS and reacted for 20 min with 50 μg/ml Alexa-Con A in PBS and then treated with PBS containing 3% (w/v) paraformaldehyde. To exclude non-specific incorporation of FSL-1, inhibition of FITC-FSL-1 uptake by unlabelled FSL-1 was also examined. Uptake of FITC-FSL-1 was measured in the presence of 9 or 35 μg/ml unlabelled FSL-1 under the experimental conditions described www.selleckchem.com/products/17-AAG(Geldanamycin).html above. To test the effects of Nys, CPZ and MbCD on FSL-1 uptake, RAW264.7 cells were treated for 30 min with various concentrations of the inhibitors as indicated in Fig. 4, which do not affect the viability of the cells.

After the cells had been washed with RPMI-1640 base medium, the uptake level of FSL-1 was determined as described above. A mouse clathrin heavy-chain-specific small interfering RNA (siRNA) (ACUAAGUAGCGAGAAAGGCtt) and negative control siRNA were purchased from Applied Biosystems (Foster City, CA). A 500-μl suspension of RAW264.7 cells (5 × 105 cells/ml) in a 24-well plate was prepared with antibiotic-free RPMI-1640 complete medium. The cells were incubated for 24 hr and then transfected with the siRNA (20 pmol/well) by using Lipofectamine 2000 according to the manufacturer’s instructions. The medium was exchanged at 5 hr and 24 hr after transfection, and the cells were examined for FSL-1 uptake at 48 hr after transfection. To confirm the effects of siRNAs, Real-Time TaqMan PCR was performed according to the manufacturer’s standard PCR protocol by using a

StepOne Real-Time PCR system (Applied Biosystems) with Rucaparib concentration specific pre-made TaqMan probes for mouse clathrin heavy chain (CGTTAATTGACCAGGTTGTACAGAC, Applied Biosystems) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; GAACGGATTTGGCCGTATTGGGCGC, Applied Biosystems). For down-regulation of CD14 or CD36, their specific siRNA cocktails were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Eighty picomoles of siRNA or negative control siRNA were transfected into HEK293/CD14 or HEK293/CD36 using Metafectene (Biontex Laboratories GmbH). The effects of siRNA transfection on CD14 and CD36 expression level were confirmed by FCM analysis. HEK293 cells were prepared in a six-well plate (5 × 105/well). Then the cells were transiently transfected with CD14 (1 or 2 μg) and/or CD36 (1 or 2 μg). After a 48-hr incubation, FITC-FSL-1 (100 μg/ml) was added and the uptake level was determined.